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Abstract. In this paper it is shown that every generalized Kuhn–Tucker point of a vector
optimization problem involving locally Lipschitz functions is a weakly efficient point if and

only if this problem is KT-pseudoinvex in a suitable sense. Under a closedness assumption (in
particular, under a regularity condition of the constraint functions) it is pointed out that in this
result the notion of generalized Kuhn–Tucker point can be replaced by the usual notion of

Kuhn–Tucker point. Some earlier results in (Martin (1985), Journal of Optimization Theory
and Applications 47, 65–76; Osuna-G�omez et al. (1999), Journal of Mathematical Analysis
and Applications 233, 205–220; Osuna-G�omez et al. (1998), Journal of Optimization Theory and

Applications 98, 651–661, Phuong et al. (1995), Journal of Optimization Theory and Applica-
tions 87, 579–594) are included as special cases of ours. The paper also contains character-
izations of HC-invexity and KT-invexity properties which are sufficient conditions for
KT-pseudoinvexity property of nonsmooth problems.

Mathematics Subject Classifications: 90C29; 26B25
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1. Introduction

Let �f and gi ði ¼ 1; 2; . . . ;mÞ be differentiable functions defined on an
Euclidean space Rn. Consider the following Mathematical Programming
Problem (P)

min �f ðxÞ ð1:1Þ
subject to x 2 S :¼fu : giðuÞ 2 0 ði ¼ 1; 2; . . . ;mÞg: ð1:2Þ

Here and in the sequel the notation a 2 b for real numbers a and b means
that a is less than or equal to b. Let x0 2 S and

I0 :¼ Iðx0Þ ¼ fi : giðx0Þ ¼ 0g: ð1:3Þ

Hanson [6] was the first who showed that under a generalized convexity
requirement, later called invexity, every Kuhn–Tucker point is a minimizer
of (P). Recall [6] that �f and gi ði 2 I0Þ are invex on S at x0 if there is a
map g :S! Rn such that for all x 2 S
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�fðxÞ � �fðx0Þ 3 �f
0

x0
ðgðxÞÞ;

giðxÞ � giðx0Þ 3 g0ix0ðgðxÞÞ ði 2 I0Þ;

where �f
0

x0
and g0ix0 denote the Fr�echet derivatives of �f and gi at x0, respec-

tively. In this case, Martin [9] said that Problem (P) is HC-invex on S at x0.
Thus, every Kuhn–Tucker point is a minimizer if Problem (P) is HC-invex
at this point. Martin [9] remarked that the converse is not true in general,
and he proposed a weaker notion, called KT-invexity, which assures that
every Kuhn–Tucker point is a minimizer of Problem (P) if and only if Prob-
lem (P) is KT-invex. In [11, 12] this result was established for a vector opti-
mization problem with differentiable data. In this paper, we shall extend
this property to a vector optimization problem involving locally Lipschitz
functions. The case where S is an arbitrary subset which may not be given
by inequality constraints (1.2) is also considered. Our obtained extensions
are useful since many problems often encountered in economics, engineering
design ... can be described only by locally Lipschitz functions (see [3]). The
main tools we use are nonsmooth versions of the corresponding HC-invexi-
ty, KT-invexity and KT-pseudoinvexity notions for differentiable programs
[6, 9, 11, 12]. Nonsmooth invexity is introduced by Craven [4] and is used
in [15] to prove the converse Kuhn–Tucker condition for locally Lipschitz
programs. Observe [7, 8] that the invexity with nontrivial kernel g for the
objective function and the constraint functions can be seen as a necessary
optimality condition for Problem (P) with differentiable data.
In this paper, we consider a generalized Kuhn–Tucker point of a vector

optimization problem involving locally Lipschitz functions, weakly efficient
solutions of the problem and KT-pseudoinvexity of the problem, and show
that the generalized Kuhn–Tucker point of the problem is a weakly effi-
cient solution if and only if the problem is KT-pseudoinvex. Under a clo-
sedness assumption, it is shown that in the just mentioned result the notion
of generalized Kuhn–Tucker point can be replaced by the usual notion of
Kuhn–Tucker point. The KT-pseudoinvexity is a generalization of HC-in-
vexity and KT-invexity. We give stronger characterizations for the problem
to be KT-invex or HC-invex by using the scalarization of its objective
functions or its Lagrange functions. Furthermore, we define a generalized
stationary point of a vector optimization problem with a ‘‘geometric’’ con-
straint set by using the Clarke normal cone, and show that the generalized
stationary point of the problem is a weakly efficient solution if and only if
the problem is KT-pseudoinvex.
The organization of this paper is as follows. Section 2 gives definitions

of HC-invexity, KT-invexity and KT-pseudoinvexity properties of a non-
smooth problem of vector optimization, and shows that the last two
invexity properties coincide in the case of scalar optimization. Section 3
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recalls some criteria of consistency of convex inequalities which are needed
in the subsequent sections. Section 4 contains extensions of results of [9,
11, 12] to a vector optimization problem where S is given by a system of
nonsmooth inequalities. Section 5 considers a problem with a ‘‘geometric’’
constraint set S.

2. Preliminaries

Let A be an arbitrary nonempty subset of an Euclidean space Rn. We say
that A is a convex cone if ka 2 A for all k 3 0; a 2 A and if
aa1 þ ð1� aÞa2 2 A for all a1 2 A; a2 2 A and a 2 ½0; 1�. We denote by
co A (resp. cl A) the convex hull (resp. the closure) of A. The cone gener-
ated by A is denoted by cone A:

cone A :¼fka : k 3 0; a 2 Ag:

For simplicity of notation we write cl cone A and cl cone co A instead of
cl (coneAÞ and cl [ cone (co AÞ� respectively.
Let dAðxÞ be the distance from x to A � Rn. Given a sequence of subsets

Al � Rn ðl ¼ 1; 2; . . .Þ we write x 2 lim inf
l!1

Al if dAl
ðxÞ ! 0 as l!1. If

Al ðl ¼ 1; 2; . . .Þ are real numbers then x 2 lim inf
l!1

Al means that jAl�
xj ! 0 ðl!1Þ. Thus, for a sequence of real numbers Al if lim inf

l!1
Al is

understood in the usual sense then lim inf
l!1

Al may be an empty set while

lim inf
l!1

Al does exist.

For vectors x ¼ ðx1;x2; . . . ; xnÞ 2 Rn and n ¼ ðn1; n2; . . . ; nnÞ 2 Rn we
write x ¼ n (resp. x 2 n ; x < n) if the equalities xi ¼ ni (resp. the inequali-
ties xi 2 ni ; xi < ni) hold for all i ¼ 1; 2; . . . ; n. We write xO n if the
inequalities xi 2 ni hold for all i ¼ 1; 2; . . . ; n, and if at least one of these
inequalities is strict.
We denote by hx; ni the scalar product of x and n : hx; ni ¼

Pn
i¼1 xini.

The symbol hx;Ai is defined as the set fhx; ni : n 2 Ag.
Let f ¼ ð f1; f2; . . . ; fpÞ and g ¼ ðg1; g2; . . . ; gmÞ be locally Lipschitz vector-

valued maps defined on Rn. We write

f 0ðx0; �Þ ¼ ð f 0
1 ðx0; �Þ; f 0

2 ðx0; �Þ; . . . ; f 0
p ðx0; �ÞÞ;

ofðx0Þ ¼ of1ðx0Þ � of2ðx0Þ � � � � � ofpðx0Þ;
where f 0

j ðx0; �Þ and ofjðx0Þ, introduced in [3], are Clarke directional deriva-
tive and subdifferential of fj at x0. We denote by TAðx0Þ and NAðx0Þ the
Clarke tangent cone and the Clarke normal cone of A � Rn at x0 2 A.
Recall [3] that

TAðx0Þ ¼ fx : d 0
A ðx0; xÞ ¼ 0g; ð2:1Þ

NAðx0Þ ¼ fn : hn; xi 2 0 8x 2 TAðx0Þg ¼ cl cone odAðx0Þ; ð2:2Þ
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where d 0
A ðx0;�Þ and odAðx0Þ stand for the Clarke directional derivative and

Clarke subdifferential of the distance function dAð�Þ at x0.
Consider the following Vector Optimization Problem (VOP)

min fðxÞ ð2:3Þ
subject to gðxÞ 2 0: ð2:4Þ

Let S ¼ fx : gðxÞ 2 0g i.e. S ¼ fx : giðxÞ 2 0 ði ¼ 1; 2; . . . ;mÞg. A point
x0 2 S is called a weakly efficient point of Problem (VOP) if for any point
x 2 S the following condition does not hold:

fðxÞ < fðx0Þ: ð2:5Þ

Necessary condition for x0 2 S to be a weakly efficient point is established
in [3]. Under some regularity assumption a weakly efficient point must be a
Kuhn–Tucker point. Before formulating the definition of a Kuhn–Tucker
point let us denote by ðljÞj2J a vector with components lj ð j 2 JÞ and
ðkiÞi2I0 a vector with components ki ði 2 I0Þ where J ¼ f1; 2; . . . ; pg and I0
is defined by (1.3).

DEFINITION 2.1. A point x0 2 S is a Kuhn–Tucker point of Problem
(VOP) if there are vectors l :¼ðljÞj2JP0 and k :¼ðkiÞi2I0 3 0 such that

0 2 Hðl; k; x0Þ; ð2:6Þ
where

Hðl; k; x0Þ ¼
X

j2J
lj ofjðx0Þ þ

X

i2I0
ki ogiðx0Þ: ð2:7Þ

Observe that (2.6) means that there are points cj 2 ofjðx0Þ ð j 2 JÞ and
bi 2 ogiðx0Þ ði 2 I0Þ such that

0 ¼
X

j2J
ljcj þ

X

i2I0
kibi:

Let us introduce the following condition (CQ) at x0 2 S: if I0 6¼ ; then
0 62 co

[

i2I0
ogiðx0Þ: ð2:8Þ

From Theorem 6.1.3 of [3] it follows that if x0 is a weakly efficient point
of (VOP) then under condition (CQ) at least one of the Lagrange multipli-
ers associated to the objective functions of (VOP) is nonzero.

DEFINITION 2.2. Problem (VOP) is HC-invex on S at x0 if fj ð j 2 JÞ and
gi ði 2 I0Þ are invex on S at x0 in the sense of Craven [4]: there is a map
g : S! Rn such that for all x 2 S

fjðxÞ � fjðx0Þ 3 f 0
j ðx0; gðxÞÞ ð j 2 JÞ; ð2:9Þ

giðxÞ � giðx0Þ 3 g0i ðx0; gðxÞÞ ði 2 I0Þ: ð2:10Þ
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DEFINITION 2.3. Problem (VOP) is KT-invex on S at x0 if there is a map
g :S! Rn such that for all x 2 S

fjðxÞ � fjðx0Þ3 f 0
j ðx0; gðxÞÞ ð j 2 JÞ; ð2:11Þ

�giðx0Þ3 g0i ðx0; gðxÞÞ ði 2 I0Þ: ð2:12Þ

DEFINITION 2.4. Problem (VOP) is KT-pseudoinvex on S at x0 if there is
a map g :S! Rn such that for all x 2 S

fðxÞ < fðx0Þ ) 0 > f 0
j ðx0; ðxÞÞ ð j 2 JÞ; ð2:13Þ

0 3 g0i ðx0; gðxÞÞ ði 2 I0Þ: ð2:14Þ

�

DEFINITION 2.5. Problem (VOP) is KT-pseudoinvex if for all x0 2 S it is
KT-pseudoinvex on S at x0. Similarly for HC-invexity and KT-invexity
properties of Problem (VOP).

Relationships between the above notions of invexity are given by

PROPOSITION 2.1.

1. For any Problem (VOP) and any point x0 2 S,
HC-invexity on S at x0 ) KT-invexity on S at x0 ) KT-pseudoinvexi-
ty on S at x0.

2. For any Problem (P) (i.e. Problem (VOP) with p ¼ 1) and any point
x0 2 S, KT-invexity on S at x0 , KT-pseudoinvexity on S at x0.

Proof. The first part of Proposition 2.1 is obvious from the very definitions.
To prove the second one it is enough to show that for the case p ¼ 1 the
following implication is true:

KT-pseudoinvexity on S at x0 ) KT-invexity on S at x0: ð2:15Þ

Indeed, let x 2 S. If fðxÞ 3 fðx0Þ then (2.11) and (2.12) are satisfied, with
gðxÞ ¼ 0. If fðxÞ < fðx0Þ then by assumption there is a point gðxÞ satisfying
(2.13) and (2.14). Since cf 0ðx0; gðxÞÞ ! �1 as c! þ1, we can take c > 0
such that

fðxÞ � fðx0Þ 3 cf 0ðx0; gðxÞÞ ¼ f 0ðx0; cgðxÞÞ:

On the other hand, we have from (2.14)

�giðx0Þ ¼ 0 3 cg0i ðx0; gðxÞÞ ¼ g0i ðx0; cgðxÞÞ ði 2 I0Þ:

Therefore, (2.11) and (2.12) are satisfied, with cgðxÞ instead of gðxÞ. Impli-
cation (2.15) is thus established. (
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REMARK 2.1. Implication (2.15) is no longer true in case p > 1. In other
words, the equivalence formulated in the second part of Proposition 2.1
fails to hold if p > 1. This is shown by Example 4.3 of Section 4 (see also
Example 3.5 of [17]).

In this paper Problem (VOP) is called differentiable if all functions fj
and gi are Fr�echet differentiable. (Observe that in such a problem functions
fj and gi may not be locally Lipschitz, except for the case where they are
continuously Fr�echet differentiable.) When dealing with differentiable prob-
lems we shall use the Fr�echet derivatives f 0jx0 and g 0ix0 of fj and gi at x0
instead of the Clarke subdifferentials ofjðx0Þ and ogiðx0Þ. We also observe
that in this case, for all x 2 Rn, we shall use f 0jx0ðxÞ and g 0ix0ðxÞ in place of
f 0
j ðx0;xÞ and g0i ðx0;xÞ. Thus, for the differentiable case Definitions 2.2 and
2.4 reduce to the known properties of HC-invexity [9] and KT-pseudoin-
vexity [11]. Observe that even in the differentiable case KT-invexity in Defi-
nition 2.3 does not coincide with KT-invexity defined in [11] since in [11]
(2.11) is replaced by fðxÞ � fðx0ÞPf 0x0ðgðxÞÞ. The KT-invexity in [12] is
renamed as KT-pseudoinvexity in [11].

3. Consistency of Convex Inequalities

In this section we give two propositions on the consistency of systems of
convex inequalities which will be used in the subsequent sections.
Let

J ¼ f1; 2; . . . ; pg;
I ¼ f1; 2; . . . ; kg:

Given nonempty compact convex sets Cj ð j 2 JÞ and Bi ði 2 IÞ in Rn, we
define

wjðnÞ ¼ max
c2Cj

hc; ni;

uiðnÞ ¼ max
b2Bi

hb; ni

and consider the consistency of the following system of inequalities of vari-
able n 2 Rn

wðnÞ < 0; ð3:1Þ

uðnÞ 2 0; ð3:2Þ

where w (resp. u) denotes the vector with components wj (resp. ui).
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PROPOSITION 3.1. System (3.1), (3.2) has a solution if and only if

0 62 co
[

j2J
Cj þ cl cone co

[

i2I
Bi: ð3:3Þ

Proof. We see that

ð3:3Þ () ½�co
[

j2J
Cj� \ cl cone co

[

i2I
Bi ¼ ;

() (by a separation theorem) 9n 2 Rn such thathv;ni < 0 and

hw;ni 2 0 for all v 2 co
[

j2J
Cj and w 2 cl cone co

[

i2I
Bi:

Thus the conclusion of Proposition 3.1 is true. (

Now let a ¼ ða1; a2; . . . ; apÞ and b ¼ ðb1; b2; . . . ;bkÞ. Consider the follow-
ing nonhomogeneous system of inequalities of variable n 2 Rn

wðnÞ 2 a; ð3:4Þ
uðnÞ 2 b: ð3:5Þ

Let
C 0j ¼ Cj � f�ajg � Rn � R;

B 0i ¼ Bi � f�big � Rn � R:

The following result is an easy consequence of Proposition 3.1.

PROPOSITION 3.2. System (3.4), (3.5) has a solution if and only if

ð0; 1Þ 62 cl cone co
[

j2J
C 0j ;

[

i2I
B 0i

( )

where 0 denotes the origin of Rn.

In the next section, for every point x0 2 S we set I ¼ Iðx0Þ ¼ I0;
Cj ¼ ofjðx0Þ and Bi ¼ ogiðx0Þ. Hence by [3] wjðnÞ ¼ f 0j ðx0; nÞ and uiðnÞ ¼
g0i ðx0; nÞ ðn 2 RnÞ.

4. Vector Optimization Problem with Inequality Constraints

In this section, unless otherwise specified we shall assume that f and g are
locally Lipschitz vector-valued maps and S is given by (1.2).
Let x0 2 S and t 2 R. Consider the following subsets of Rn � R:

D1ðx0; tÞ ¼
[

j2J

�
ofjðx0Þ � ftg

�
;

D2ðx0; 0Þ ¼
[

i2I0

�
ogiðx0Þ � f0g

�
;
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Dðx0; tÞ ¼ D1ðx0; tÞ
[

D2ðx0; 0Þ:

Recall that I0 ¼ Iðx0Þ is defined by (1.3). We begin by a technical lemma.

LEMMA 4.1. The following statements are equivalent:

(a) For some t 6¼ 0 cone co Dðx0; tÞ is closed.
(b) For all t0 6¼ 0 cone co Dðx0; t0Þ is closed.

Proof. Obviously (b) ) (a). To prove the converse implication let us
observe that

ðn; rÞ 2 cone co Dðx0; t0Þ , ðn; tt0�1rÞ 2 cone co Dðx0; tÞ;
ðn; rÞ 2 cl cone co Dðx0; t0Þ , ðn; tt0�1rÞ 2 cl cone co Dðx0; tÞ:

On the other hand, by assumption (a)
cone co Dðx0; tÞ ¼ cl cone co Dðx0; tÞ:

Therefore, ðn; rÞ 2 cl cone co Dðx0; t0Þ , ðn; rÞ 2 cone co Dðx0; t0Þ.
Thus cone co Dðx0; t0Þ is closed. (

A sufficient condition for the closedness of cone co Dðx0; tÞ is given by

LEMMA 4.2. If condition (CQ) holds then for all t 6¼ 0 cone co Dðx0; tÞ is
closed.

Proof. Our desired conclusion is proved if 0 62 co Dðx0; tÞ since in this case
cone co Dðx0; tÞ is a closed set (see [16, Corollary 9.6.1]). Assume to the
contrary that 0 2 co Dðx0; tÞ. Then there are nonnegative numbers
lj ð j 2 JÞ and ki ði 2 I0Þ such that

1 ¼
X

j2J
lj þ

X

i2I0
ki; ð4:1Þ

0 2
X

j2J
ljofjðx0Þ þ

X

i2I0
kiogiðx0Þ; ð4:2Þ

0 ¼
X

j2J
ljtþ

X

i2I0
ki:0: ð4:3Þ

Since t 6¼ 0 (4.3) yields lj ¼ 0 ð j 2 JÞ. Hence (4.1) and (4.2) contradict con-
dition (CQ) (see (2.8)). (

REMARK 4.1. If instead of the Lipschitz property of fj and gi we assume
that they are Fr�echet differentiable at x0 and if in the definition of
D1ðx0; tÞ and D2ðx0; 0Þ we replace the subdifferentials ofjðx0Þ and ogiðx0Þ
by the Fr�echet derivatives f 0jx0 and g0ix0 then the closedness of
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cone co Dðx0; tÞ is automatically satisfied for all t 2 R. This follows from
the fact that the convex cone generated by a finitely many points must be
closed (see [16, Theorem 19.1]). Thus for differentiable problem (VOP) the
sets cone co Dðx0; tÞ are always closed. The same is true for the sets
cone co Mðx0; xÞ and cone co Qðx0; xÞ to be introduced later.

REMARK 4.2. Condition (CQ) is not a necessary condition for the closed-
ness of cone Dðx0; tÞ.

EXAMPLE 4.1. Consider Problem (VOP) with n ¼ p ¼ m ¼ 1: For x 2 R;
f1ðxÞ ¼ x and g1ðxÞ ¼ jxj. For x0 ¼ 0 we have of1ðx0Þ ¼ f1g; I0 ¼ f1g and
og1ðx0Þ ¼ ½�1;þ1�. Obviously, condition (CQ) is violated, but
cone co Dðx0; 1Þ is closed (and hence, by Lemma 3.1 cone co Dðx0; tÞ is
closed for all t 6¼ 0).

The following example proves that Lemma 4.2 may fail to hold without
condition (CQ).

EXAMPLE 4.2. Consider Problem (VOP) with n ¼ 2, p ¼ m ¼ 1. For
x ¼ ðx1;x2Þ 2 R2 let us set f1ðxÞ ¼ x1 and g1ðxÞ ¼ ðx21 þ x22Þ

1=2 þ x2. Since
in our case p ¼ 1, (VOP) becomes Problem (P) and hence, by Proposition
2.1, (VOP) is KT-pseudoinvex if and only if it is KT-invex. Setting
x0 ¼ ð0; 0Þ 2 R2 and using the easily checked equalities of1ðx0Þ ¼ fð1; 0Þg
and og1ðx0Þ ¼ fðx1; x2Þ 2 R2 : x21 þ ðx2 � 1Þ2 2 1g we see that condition
(CQ) does not hold at x0 (since 0 2 og1ðx0ÞÞ and cone co Dðx0; tÞ is not
closed for all t 6¼ 0.

DEFINITION 4.1. A point x0 2 S is a generalized Kuhn–Tucker point of
Problem (VOP) if there is a vector l : ¼ ðljÞj2JP0 such that

0 2
X

j2J
ljofjðx0Þ þ cl cone co

[

i2I0
ogiðx0Þ: ð4:4Þ

Obviously, a Kuhn–Tucker point is also a generalized Kuhn–Tucker
point and the converse is true if the set cone co

S

i2I0
ogiðx0Þ is closed.

DEFINITION 4.2. We say that the closedness assumption is satisfied at
x0 2 S if there is t 6¼ 0 such that cone co Dðx0; tÞ is closed. If this is true
for all x0 2 S then we simply say that the closedness assumption is satis-
fied.

Let us observe by Lemma 4.2 that condition (CQ) implies the closedness
assumption at x0.
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In [18] Treiman introduced a qualification condition for closed subsets
Ai � Rn ði ¼ 1; 2; . . . ;m0Þ at x0 2

Tm0

i¼1Ai by requiring that the set-valued
map

v ¼ ðv1; v2; . . . ; vm0 Þ 2 Rm0 7!UðvÞ ¼
\m0

i¼1
ðAi þ viÞ

is pseudo-Lipschitz [1] at ð0;x0Þ. We shall prove that this Treiman condi-
tion, applied to the sets

Ai ¼ fx : giðxÞ 2 0g ði ¼ 1; 2; . . . ;m0Þ;
is more general than our condition (CQ); however, unlike condition (CQ),
it does not assure the validity of the closedness assumption at x0. Indeed,
it is known from [18, Prop. 3.3] that the Treiman qualification condition at
x0 is characterized by the following condition:

ai 2 eNAi
ðx0Þ ði¼ 1;2; . . . ;m0Þ;

Xm0

i¼1
ai ¼ 0

" #

) ai ¼ 0 ði¼ 1;2; . . . ;m0Þ;

where eNAi
ðx0Þ denotes the Mordukhovich normal cone of Ai at x0 (see

[10]).
Without loss of generality we may assume that

I0 ¼ Iðx0Þ ¼ f1; 2; . . . ;m0g ðm0 2 mÞ. Then condition (CQ) implies that
0 62 ogiðx0Þ ði ¼ 1; 2; . . . ;m0Þ; hence, by Corollary 1 of Theorem 2.4.7 of [3]

NAi
ðx0Þ � cone ogiðx0Þ:

Since by [10] the Mordukhovich normal cone is a subset of the Clarke nor-
mal cone, we derive from the just written inclusion that, for each
ai 2 eNAi

ðx0Þ, there exists ki 3 0 with ai 2 kiogiðx0Þ. Using this fact we eas-
ily check that (2.8) implies the above characterization of the Treiman quali-
fication condition. Thus

condition (CQ) at x0 ) Treiman qualification condition at x0:

The converse of this implication is no longer true. To see this, assume that
m ¼ 1, i.e. g is a scalar function. Then the Treiman qualification condition
holds automatically (see [18, p. 1320]), while our condition (CQ) requires
that 0 62 ogðx0Þ (i.e. condition (CQ) holds not automatically). Example 4.2
illustrates that the Treiman qualification condition holds (since m ¼ 1) but
it does not imply the closedness assumption at x0. This example also
proves that the constraint qualification given in [2, p. 2424] is not sufficient
for the validity of our closedness assumption.
To conclude the discussion on links between condition (CQ) and con-

straint qualification conditions of [2, 18], we restrict ourselves to optimiza-
tion problems with inequality constraints only, and we observe that usually
a constraint qualification is understood as a condition under which the
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Lagrange multipliers associated to the objective functions of (scalar or)
multiobjective optimization problems are not all zero. In this classical
sense, condition (CQ) is a constraint qualification, while the above men-
tioned conditions of both [2, 18] are not.
Let us mention the following result showing that under the closedness

assumption the notions of Kuhn–Tucker points and generalized Kuhn–
Tucker points are equivalent.

LEMMA 4.3. Let the closedness assumption be satisfied at x0. Then x0 is a
Kuhn–Tucker point if and only if it is a generalized Kuhn–Tucker point.

Proof. It is enough to establish the sufficiency part of Lemma 4.3. Indeed,
if x0 is a generalized Kuhn–Tucker point then there are points
cj 2 ofjðx0Þ ð j 2 JÞ, vector ðljÞj2JP0 and sequences ðkliÞi2I0 P 0; bli 2 ogi
ðx0Þ ðl ¼ 1; 2; . . .Þ such that

X

j2J
ljcj þ

X

i2I0
klib

l
i ! 0

as l!1. Setting t ¼
P

j2J lj > 0, we derive that

X

j2J
ljðcj; 1Þ þ

X

i2I0
kliðbli; 0Þ ! ð0; tÞ;

i.e. ð0; tÞ 2 cl cone co Dðx0; tÞ. By Lemma 4.1 the closedness assumption at
x0 implies the closedness of cone co Dðx0; t0Þ for all t0 6¼ 0. Since
t 6¼ 0; cone co Dðx0; tÞ is closed. Thus ð0; tÞ 2 cone co Dðx0; tÞ, proving
that x0 is a Kuhn–Tucker point. (

We are now in a position to formulate

THEOREM 4.1. Consider the following statements:

(a) Problem (VOP) is KT-pseudoinvex on S at x0.
(b) If x0 is a generalized Kuhn–Tucker point then x0 is a weakly efficient

point.
(c) If x0 is a Kuhn–Tucker point then x0 is a weakly efficient point.

Then (a) , (b). If, in addition, the closedness assumption is satisfied at x0
(in particular, if condition (CQ) holds at x0) then all three above statements
are equivalent.

Proof. It is enough to prove the first conclusion of Theorem 4.1. The sec-
ond conclusion is a consequence of the first one and Lemma 4.3.
(a) ) (b). Assume to the contrary that there is a vector l ¼ ðljÞj2J � 0

such that (4.4) is satisfied, but x0 is not a weakly efficient point i.e. (2.5) is
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satisfied for some x 2 S. By the KT-pseudoinvexity property there is gðxÞ
satisfying (2.13) and (2.14). On the other hand, (4.4) shows that there are
points cj 2 ofjðx0Þ and sequences ðkliÞi2I0 3 0; bli 2 ogiðx0Þ ðl ¼ 1; 2; . . .Þ
such that

�
X

j2J
ljcj ¼ lim

l!1

X

i2I0
klib

l
i: ð4:5Þ

Making use of (2.13) and (2.14) we obtain

0 >
X

j2J
ljhcj; gðxÞi ; ð4:6Þ

0 3
X

i2I0
klihbli; gðxÞi ðl ¼ 1; 2; . . .Þ: ð4:7Þ

Letting l!1 in (4.7) and taking (4.5) into account we get

0 3 �
X

j2J
ljhcj; gðxÞi ;

a contradiction to (4.6).
(b) ) (a) If

0 2 co
[

j2J
ofjðx0Þ þ cl cone co

[

i2I0
ogiðx0Þ ð4:8Þ

then by statement (b) there is no x 2 S satisfying (2.5). Thus in this case
the KT-pseudoinvexity property is satisfied. If (4.8) does not hold then by
Proposition 3.1 system

f 0
j ðx0; nÞ < 0 ð j 2 JÞ; ð4:9Þ
g0i ðx0; nÞ 2 0 ði 2 I0Þ ð4:10Þ

has a solution n. If we set gðxÞ ¼ n for all x satisfying (2.5) then (2.13) and
(2.14) hold. (

REMARK 4.3. We have seen in the proof of Theorem 4.1 that the second
conclusion of this theorem is obtained by combining the first one and
Lemma 4.3. It is worth noticing that this result can be derived by using
(the first conclusion of Theorem 4.1 and) Proposition 3.2 instead of
Lemma 4.3. Indeed, since the implication (b) ) (c) is obvious, it is enough
to show that (c) ) (a). Assume to the contrary that (2.5) holds for some
x 2 S but system (4.9), (4.10) has no solution. Observe that the inconsis-
tency of system (4.9), (4.10) implies the inconsistency of system

f 0
j ðx0; nÞ 2 t0 ð j 2 JÞ;
g0i ðx0; nÞ 2 0 ði 2 I0Þ;
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where

t0 :¼ min
j2J

�
fjðxÞ � fjðx0Þ

�
< 0:

Hence by Proposition 3.2 and Lemma 4.1

ð0; 1Þ 2 cl cone co Dðx0;�t0Þ ¼ cone co Dðx0;�t0Þ:

Thus there are vectors l 3 0 and k 3 0 such that (2.6) is satisfied and

1 ¼ �
X

j2J
lj:t
0 �
X

i2I0
ki:0:

Since t0 < 0 the last equality shows that l 6¼ 0. By statement (c) x0 is a
weakly efficient point. This contradicts (2.5).

We now give some examples.

EXAMPLE 4.3. Consider Problem (VOP) with n ¼ p ¼ 2 and m ¼ 1. For
x ¼ ðx1;x2Þ 2 R2 define f1ðxÞ ¼ x1 þ x1x2; f2ðxÞ ¼ x1 þ x2 � x1x2 and
g1ðxÞ ¼ ðx21 þ x22Þ

1=2 þ x2. It is easily seen that S ¼ fðx1;x2Þ 2 R2:
x1 ¼ 0; x2 2 0g and co½

S
i¼1;2ofiðx0Þ � ¼ fðx1; x2Þ 2 R2: x1 ¼ 1; x2 2 ½0; 1�g

where x0 : ¼ ð0; 0Þ 2 R2. Making use of the formulae of og1ðx0Þ given in
Example 4.2 we can check that

� co
[

i¼1;2
ofiðx0Þ

" #
\

cone og1ðx0Þ ¼ ;;

� co
[

i¼1;2
ofiðx0Þ

" #
\

cl cone og1ðx0Þ ¼ fð�1; 0Þg:

The first of these conditions shows that x0 is not a Kuhn–Tucker point,
and the second proves that x0 is a generalized Kuhn–Tucker point. It is
easy to see that x0 is a weakly efficient point and (VOP) is KT-pseudoinvex
at x0. Observe that (VOP) is not KT-invex at x0. Indeed, for
x ¼ ð0;�1Þ 2 S we cannot find gðxÞ satisfying system (2.11), (2.12).

EXAMPLE 4.4. Consider Problem (VOP) with n ¼ p ¼ 2 and m ¼ 1. For
x ¼ ðx1;x2Þ 2 R2 define f1ðxÞ ¼ x1 þ x2; f2ðxÞ ¼ x1 � x2 and
g1ðxÞ ¼ x1 þ x1x2. Observe that in our case (VOP) is KT-pseudoinvex at
x0 :¼ð0; 0Þ 2 R2 and x0 is not a weakly efficient point. Hence by Theorem
4.1 x0 is not a generalized Kuhn–Tucker point.

As a consequence of Theorem 4.1 we obtain
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THEOREM 4.10. (a) Every generalized Kuhn–Tucker point is a weakly efficient
point of Problem (VOP) if and only if Problem (VOP) is KT-pseudoinvex.
(b) Under the closedness assumption, every Kuhn–Tucker point is a weakly

efficient point of Problem (VOP) if and only if Problem (VOP) is KT-pseudo-
invex.

From Theorem 4.10 we get the following corollary, the first statement of
which is established in [11, 12] and the second one of which is a generaliza-
tion of Theorem 2.1 of [9] to the nonsmooth case.

COROLLARY 4.1. (a) Every Kuhn–Tucker point is a weakly efficient point
of differentiable Problem (VOP) if and only if Problem (VOP) is KT-pseudo-
invex.
(b) Every generalized Kuhn–Tucker point is a minimizer of Problem (P)

(i.e., Problem (VOP) with p ¼ 1) if and only if Problem (P) is KT-invex.
Under the closedness assumption, every Kuhn–Tucker point is a minimizer of
Problem (P) if and only if Problem (P) is KT-invex.

Proof. Statement (a) is obtained from Theorem 4.10 and Remark 4.1. State-
ment (b) is a consequence of Theorem 4.10 and the remark that a weakly
efficient point of Problem (P) is exactly its global minimizer and the KT-in-
vexity coincides with the KT-pseudoinvexity (see Proposition 2.1). (

Before going further let us give a remark based on Theorem 4.1: to claim
that a generalized Kuhn–Tucker point is a weakly efficient point we must
check the KT-pseudoinvexity property of Problem (VOP). In some cases
checking this property is a difficult task since we must detect a map g satis-
fying Definition 2.4. It is then natural to ask if we can find sufficient condi-
tions for the KT-pseudoinvexity property without knowing g explicitly.
Observe from Proposition 2.1 that HC-invexity and KT-invexity imply
KT-pseudoinvexity. So, to answer the above question it is enough to give
characterizations of HC-invexity and KT-invexity in terms of properties
which are not related to map g mentioned in Definitions 2.2 and 2.3. The
remainder of this section is devoted to these characterizations (see Theo-
rems 4.2 and 4.3).
Let us set

S0 ¼ fx 2 S : fðxÞ � fðx0Þ 6¼ 0g;
Fðx0;xÞ ¼

[

j2J
½ofjðx0Þ � ffjðx0Þ � fjðxÞg� � Rn � R;

Mðx0; xÞ ¼ Fðx0;xÞ
[

D2ðx0; 0Þ:
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THEOREM 4.2. Consider the following statements:
(a) Problem (VOP) is KT-invex on S at x0.
(b) If ll � 0; kl 3 0 ðl ¼ 1; 2; . . .Þ and 0 2 lim inf

l!1
Hðll; kl; x0Þ then for all

x 2 S

lim inf
l!1
½hll; fðxÞi � hll; fðx0Þi� 3 0:

(c) If l � 0; k 3 0 and 0 2 Hðl; k; x0Þ then for all x 2 S
hl; fðxÞi 3 hl; fðx0Þi :

Then
(a) , (b) ) (c);
(a) , (b) , (c) if for all x 2 S0 the set cone co Mðx0;xÞ is closed.
We omit the proof of this theorem, observing that it is established on

the basis of Proposition 3.2 and a modification of the proof of Theorems
4.3 and 4.30 to be given later.

REMARK 4.4. If in the definition of KT-invexity we replace (2.11) by the
following stronger condition

fðxÞ � fðx0ÞPf 0ðx0; gðxÞÞ

then Theorem 4.2 (more exactly, implications (b) ) (a) and (c) ) (a) in
Theorem 4.2) may fail to hold. The simplest counterexample is the case
where fj � 1 ði ¼ 1; 2; . . . ; pÞ and gi � 0 ði ¼ 1; 2; . . . ;mÞ.
Before turning to the HC-invexity property let us set

Gðx0; xÞ ¼
[

i2I0
½ogiðx0Þ � fgiðx0Þ � giðxÞg� � Rn � R;

Qðx0; xÞ ¼ Fðx0;xÞ
[

Gðx0; xÞ;

hðl; k; xÞ ¼
X

j2J
lj fjðxÞ þ

X

i2I0
kigiðxÞ:

Recall that Hðl; k; x0Þ is defined by (2.7).

THEOREM 4.3. Consider the following statements:

(a) Problem (VOP) is HC-invex on S at x0.
(b) If ll 3 0; kl 3 0 ðl ¼ 1; 2; . . .Þ and 0 2 lim inf

l!1
Hðll; kl;x0Þ then for all

x 2 S

lim inf
l!1
½hðll; kl; xÞ � hðll; kl;x0Þ� 3 0: ð4:11Þ

(c) If ll � 0; kl 3 0 ðl ¼ 1; 2; . . .Þ and 0 2 lim inf
l!1

Hðll; kl;x0Þ then for
all x 2 S (4.11) is satisfied.
Then

(a) , (b) ) (c);
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(a) , (b) , (c) if condition (CQ) holds.

Proof. (a) ) (b) Let ll 3 0 and kl 3 0 be sequences such that
0 2 lim inf l!1 Hðll; kl;x0Þ:

Then there are sequences clj 2 ofjðx0Þ ð j 2 JÞ and bli 2 ogiðx0Þ ði 2 I0Þ such
that

0 ¼ lim
l!1

ql; ð4:12Þ

where

ql :¼
X

j2J
ll
jc
l
j þ
X

i2I0
klib

l
i: ð4:13Þ

Let x 2 S and let gðxÞ be the point appearing in the definition of HC-in-
vexity. Then we have from (4.13)

hql; gðxÞi 2 hðll; kl; xÞ � hðll; kl;x0Þ: ð4:14Þ

Taking lim inf of both sides of (4.14) and using (4.12) we obtain (4.11), as
required.
(b) ) (a) Let x 2 S. We claim that

ð0; 1Þ 62 cl cone co Qðx0; xÞ; ð4:15Þ

where 0 stands for the origin of Rn. Indeed, otherwise there are sequences

ll 3 0; kl 3 0; clj 2 ofjðx0Þ ð j 2 JÞ; bli 2 ogiðx0Þ ði 2 I0Þ
ð4:16Þ

such that (4.12) is satisfied and

1 ¼ lim
l!1

�
hðll; kl; x0Þ � hðll; kl;xÞ

�
: ð4:17Þ

This is impossible since by statement (b) the right side of the last equality
is a nonpositive number. Applying Proposition 3.2 yields a point gðxÞ satis-
fying (2.9), (2.10).
(b) ) (c) Obviously.
(c) ) (a) (under condition (CQ)). Let x 2 S. As in the proof of implica-

tion (b) ) (a) it suffices to show the validity of (4.15). Assume to the con-
trary that (4.15) fails to hold. Then there are sequences (4.16) such that
(4.12) and (4.17) are satisfied. We claim that ll 6¼ 0 for l sufficiently large.
Indeed, otherwise we have from (4.12) and (4.17), by taking a subsequence
if necessary, that

0 ¼ lim
l!1

X

i2I0
klib

l
i; ð4:18Þ

1 ¼ lim
l!1

X

i2I0
kli½giðx0Þ � giðxÞ�: ð4:19Þ
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From (4.19) it follows that kl 6¼ 0 for l sufficiently large. So
cl : ¼

X

i2I0
kli 6¼ 0.

Setting �kl
i ¼ kli=c

l; bl ¼
P

i2I0
�kl
ib

l
i we have from (4.18)

0 ¼ lim
l!1

clbl: ð4:20Þ

Since bl belongs to the set co
S

i2I0 ogiðx0Þ which is a compact set not con-
taining the origin of Rn we may assume, by taking a subsequence if neces-
sary, that bl converges to some point b 6¼ 0. Therefore, making use of
(4.20) we get

lim
l!1

cl ¼ lim
l!1

kclblk
kblk ¼

0

kbk ¼ 0:

This contradicts (4.19). We have thus proved that llP0 for l sufficiently
large. But in this case, by statement (c) (4.11) must be satisfied. This con-
tradicts (4.17). (

THEOREM 4.30. Consider the following statements:

(a)0 Problem (VOP) is HC-invex on S at x0.
(b)0 If l 3 0; k 3 0 and 0 2 Hðl; k; x0Þ then for all x 2 S

hðl; k; xÞ 3 hðl; k; x0Þ: ð4:21Þ
(c)0 If lP0; k 3 0 and 0 2 Hðl; k; x0Þ then for all x 2 S (4.21) holds.

Then
(a)0 ) (b)0 ) (c)0;
(a)0 , (b)0 if for all x 2 Snfx0g the set cone co Qðx0; xÞ is closed;
(a)0 , (b)0 , (c)0 if condition (CQ) holds and if for all x 2 S n fx0g the set

cone co Qðx0;xÞ is closed.

Proof. (a)0 ) (b)0 Use implication (a) ) (b) of Theorem 4.3 and observe
that (b) ) (b)0.
(b)0 ) (a)0 (under the extra assumption). Let x 2 S. If x ¼ x0 then (2.9)

and (2.10) are satisfied, with gðxÞ ¼ 0. In case x 6¼ x0 it suffices to show the
validity of (4.15) which in our case means that ð0; 1Þ 62 cone co Qðx0; xÞ.
Indeed, otherwise there are l 3 0 and k 3 0 such that

0 2 Hðl; k; x0Þ;
1 ¼ �½hðl; k; xÞ � hðl; k;x0Þ�:

The last equality contradicts (4.21).
(b)0 ) (c)0 Obviously.
(c)0 ) (a)0 (under the extra assumptions). The proof is similar to that of

implication (b)0 ) (a)0. (Observe by condition (CQ) that the above vector
l must be different from zero.) (
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REMARK 4.5. Results similar to those of Theorems 4.3 and 4.30 are
obtained in [5, p.8, 9] for a problem with constraints more general than
(2.4). But they are valid only for the differentiable problem of scalar opti-
mization while Theorem 4.3 and 4.30 are established for nonsmooth prob-
lem of vector optimization.

5. Vector Optimization Problem on an Arbitrary Set

In this section we assume that S is an arbitrary nonempty subset of Rn

which may not be given by inequalities (2.4). Consider the following Vector
Optimization Problem (VOP)0:

min fðxÞ
subject to x 2 S;

where f ¼ ð f1; f2; . . . ; fpÞ is a locally Lipschitz vector-valued map. Obvi-
ously, (VOP) is a special case of (VOP)0 with S being defined by (2.4).
Problem (VOP)0 where f is Fr�echet differentiable and S is open is consid-
ered in [11]. The case when p ¼ 1 and f is nonsmooth is investigated in
[14]. We shall see that the corresponding results of [11, Theorem 2.5] and
[14, Theorem 4.1] are included in our Theorem 5.1 as special cases. We
begin by the following definition.

DEFINITION 5.1. A point x0 2 S is a generalized stationary point of Pro-
blem (VOP)0 if

0 2 co
[

j2J
ofjðx0Þ þNSðx0Þ: ð5:1Þ

DEFINITION 5.2. Problem (VOP)0 is KT-pseudoinvex on S at x0 if there is
a map g :S! TSðx0Þ such that

x 2 S; fðxÞ < fðx0Þ ) 0 > f 0ðx0; gðxÞÞ: ð5:2Þ

Problem (VOP)0 is KT-pseudoinvex if it is KT -pseudoinvex on S at any
point x0 2 S.

The notion of a weakly efficient point x0 2 S of Problem (VOP)0 is defined
as in the case of Problem (VOP): for all x 2 S condition (2.5) does not hold.
We are now in a position to formulate

THEOREM 5.1. Every generalized stationary point is a weakly efficient point
of Problem (VOP)0 if and only if Problem (VOP)0 is KT-pseudoinvex.

Proof. Sufficiency. Assume that Problem (VOP)0 is KT-pseudoinvex. We
have to show that any point x0 2 S satisfying (5.1) must be a weakly effi-
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cient point. Indeed, otherwise there is x 2 S such that fðxÞ < fðx0Þ. This
implies by Definition 5.2 that (5.2) holds for a suitable point
gðxÞ 2 TSðx0Þ. Let n 2 co

S
j2J ofjðx0Þ be such that �n 2 NSðx0Þ (see (5.1)).

Then by (2.2) hn; gðxÞi 3 0. This contradicts (5.2).
Necessity. Assume that any generalized stationary point is a weakly effi-

cient point of (VOP)0. Take an arbitrary point x0 2 S. If x0 satisfies (5.1)
then Problem (VOP)0 is KT-pseudoinvex on S at x0 since there is no x 2
S such that fðxÞ < fðx0Þ. If (5.1) does not hold then by (2.2) this means
that

0 62 co
[

j2J
ofjðx0Þ þ cl cone odSðx0Þ:

Making use of Proposition 3.1 we get that system

f 0ðx0; nÞ < 0; ð5:3Þ
d 0
Sðx0; nÞ 2 0 ð5:4Þ

has a solution n. On the other hand, from the definition of d 0
S we obtain

that d 0
Sðx0; �Þ 3 0. Combining this with (5.4) yields d 0

Sðx0; nÞ ¼ 0 i.e.
n 2 TSðx0Þ. Thus by taking gðxÞ ¼ n 2 TSðx0Þ for all x 2 S we obtain that
f 0ðx0; gðxÞÞ < 0. In other words, Problem (VOP)0 is KT-pseudoinvex on S
at x0. (

REMARK 5.1. If S is an open set then TSðx0Þ ¼ Rn and NSðx0Þ ¼ f0g for
all x0 2 S. From this it follows that Theorem 2.5 of [11] is included as a
special case of our Theorem 5.1 with S being open.

DEFINITION 5.3. Problem (VOP)0 is KT-invex on S at x0 if there is a map
g :S! TSðx0Þ such that for all x 2 S

fðxÞ � fðx0Þ 3 f 0ðx0; gðxÞÞ:

Problem (VOP)0 is KT-invex if it is KT-invex on S at any point x0 2 S.
Arguing as in the proof Proposition 2.1 we obtain

PROPOSITION 5.1. For any Problem (VOP)0 and any point x0 2 S

KT-invexity on S at x0 ) KT-pseudoinvexity on S at x0.

The converse is true for Problem ðPÞ0 (i.e. Problem (VOP)0 with p ¼ 1).

As a direct consequence of Theorem 5.1 and Proposition 5.1 we get the
following result of [14, Theorem 4.1] where the term ‘‘stationary point’’ is
used instead of ‘‘generalized stationary point’’.
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COROLLARY 5.1. Every generalized stationary point of Problem ðPÞ0 is a
minimizer of ðPÞ0 if and only if Problem ðPÞ0 is KT-invex.

We refer the reader to [13] for an invexity notion for non-Lipschitz func-
tions which is introduced on the basis of a property of stationary points
similar to that given in Corollary 5.1. In [13] stationary points are defined
in terms of circa-subdifferentials which coincide with Clarke subdifferen-
tials in Lipschitz case.
To conclude this section let us note that a result similar to Theorem 4.2

can be formulated for Problem (VOP)0 with the help of odSðx0Þ.
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